CHAPTER 7. SYMMETRY IN QUANTUM MECHANICS Quantum Physics I1

Appendices

7.14 Properties of functions

Consider two sets, X and Y. A function (or map) f from X to Y is defined such that, for each
element z belonging to X (denoted as x € X), there exists a unique element y in Y associated
with z. We represent this element as y = f(z) and call it the image of x under the function f.

We write it as:
f: X->Y | zoy=f(z). (7.129)

The set X is called the domain of f, and Y is its image. The set of elements in Y, which are
images under f of elements in X is called the image of X under f and is denoted as f(X). In
general, f(X) is a subset of Y (we write f(X) cY) and is not necessarily identical to Y.

The function f is injective if:
f(x)=f(a") = z=2". (7.130)

For an injective function, two elements of X cannot have the same image in Y. A function is
surjective if f(X) =Y. For a surjective function, every element of Y is the image of at least one
element of X. A function that is both injective and surjective is called bijective.

Let f be a function from X to Y and g be a function from Y to Z. The composition or
product of these two functions h: X — Z is defined as:

h(z)=g(f(x)) . (7.131)
The function h acts from X to Z and is denoted as:
h=gx*f (7.132)

or simply gf when there is no possibility of confusion with other operations. It should be noted
that f * g is not necessarily well-defined, and when it exists, it is not necessarily equal to g * f.
For example, consider real-valued functions f(z) = 22 and g(y) = ¢¥. We have:

(9% )(x)=g(a?) =™ (7.133)

and
(f9)(x) = f (") = ™. (7.134)

The composition of functions is associative, meaning that if u, v, and w are functions from
X toY, Y to Z, and Z to W, respectively, then:

(w (v xu))(@) = (wv) * u)(@). (7.135)
For each x € X, both sides of this equation correspond to the element:
w(v(u(z))) (7.136)
in W. Therefore, we can write:

(wr(w*u))(z)=((wrv)*u)(x) =w*v*u. (7.137)
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(a) Injective but (b) Non-Injective but (c) Injective and
non-surjective surjective surjective (bijective)
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b
® L ]
® L ]

Figure 7.17: Diagram of injective, surjective and bijective functions: (Wiki page on functions).)

If f: X - Y is a bijective application, then for each element y in Y, there is a unique element
x in X such that f(z) =y, and, naturally, each element z has an image in Y. Therefore, we can
define a bijective application Y - X, y — x such that y = f(x). This application is called the
inverse of f and is denoted by f'.

Often, we consider applications from a set X to itself. An example is given by real (complex)
functions of a real (complex) variable. We define the identity application as:

e: X->X , zre(x)=x. (7.138)

This application is clearly bijective. If f: X — Y is a bijective application, f~! exists, and
we have:

(J 7 * @) == (7.139)

for each x. Therefore, we write:
ftxf=ex (7.140)

where we denote the identity application of X by ex. Note that we also have:
fxft=ey (7.141)

Theorem. Let X and Y be two sets containing the same finite number n of elementg™)]
The following three statements are equivalent:

(i) f: X =Y is surjective,

(ii) f: X =Y is injective,

(iii) f: X - Y is bijective.
Proof:

(i) = f(X) =Y. Thus, f(X) is composed of n elements, which implies (ii).

(ii) = f(X) is composed of n elements. It follows that f(X) =Y, which can be reduced to
property (i).

Since (i) and (ii) are each a consequence of the other, (iii) is also true, and the theorem is
thus proved.

2Note that this theorem is not valid for two sets with different numbers of elements.
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7.14.1 Proof of Lagrange Theorem, Right and Left cosets

Let G be a group and H one of its proper subgroups. We can define an equivalence relation
—different from the last one— between the elements of G as follows: if z,y € G and 27 'y € H
then z and y are equivalent and we write x ~ y.

This is indeed an equivalence relation:

1

e aa=eVaeG, and e € H, so that a ~ a.

e if @ ~ b then a™'b e H. The inverse of a™'b is b™'a and since H is a group, b"'a € H, so
that b ~ a.

e ifa~bandb~c, then a™'b and b~'c are both in H, thus so is the their product a 'bb~tc =
1

a “c.
This equivalence relation therefore makes it possible to divide the elements of G into disjoint
classes. If 271y € H, then y is equal to an element of H multiplied on the left by z. We indicate
the set thus constructed by the symbol

Cp=aH (7.142)

which the call the left co-set associated to x.

The map H — xH is one-to-one (bijective). Indeed, each element z € xH is the image of
272 € H so that the map is surjective. But the map is also injective since for y, vy’ € H, we have
ry=zy =y=y'

We could also define a second equivalence relation z ~ y if yz~' € H and which this case, we
can define the concept of right co-set Hx in the same way as before.

These concepts are very useful, and allows in particular to prove Lagrange Theorem:

Demo. Consider the co-sets on the left of H. They are all disjoint or identical (since they are
equivalence classes). If there are n distinct left co-sets, their union is G. So, if we denote by ¢
and h the orders of G and H respectively, then g = nh and the theorem is proved. O

Let us give an example for the following order 4 group

* ‘ e a b ¢
ele a b ¢
G=ala e ¢ b (7.143)
blb ¢ e a
cle b a e
that has the subgroup H = {e,a}:
*|le a
H=el|e a (7.144)
e
We can now construct the left co-sets:
Ce=eH ={e,a} (7.145)
Co=aH ={a,e} =C, (7.146)
Cy=bH = {b,c} (7.147)
C.=cH={c,b} =C (7.148)

And we see indeed that we have two left co-set of order 2.
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7.15 Composition of Conjugacy classes theorem statement and
proof

Theorem 7.15.1 ("Composition" of conjugacy classes). Let G' be a group, and Cy and Cy two
of its conjugacy classes. Then we have

Cy * Cpy =Y nuaCh (7.149)
A

with ny,y integer. Here the multiplication C,, x C, is defined as the entire set [xy] for all x € C,
and y € Cy,. Additionally, n,,\ = nyn and niyy = ny1y = 65

To prove this, let us first prove a variant of the reordering theorem:

Theorem 7.15.2 (Reordering theorem within conjugacy classes). Let G be a group, m one of
its elements, and C one of the conjugate classes. Then the application C' —m~'Cm is bijective
into itself: The ensemble m™'C'm is thus a re-ordering of C.

Demo. First notice that this is a map into itself since for any y € C, m~'ym € C (conjugacy
class property). Second, the map is surjective. Indeed, for any y € C, it exists 2 = mym™' € G
such that y = m~'am. By definition, x is thus also in C' and therefore for all y € C' there is
an antecedent in C. Third, the map z — ma is injective (it maps distinct elements to distinct
elements). For any z,z’, we have m™tzm = m~ta'm implies that mmtzmm™ = mm tz'mm™"
so that x = 2. O

We shall soon prove that n,, is indeed an integer. But first, let us note indeed that
Nuux = Nuwx, because the two sets C), » C, and C), * C), are identical. Indeed

C, *Cy, =[uv] = [uv(uilu)] = [u(vuilu)] = [uvuflu] = [(uvuil)u] =C,*C,

since u represents all the element of C,,, and since, from the previous theorem, (uvu~!) represent
a re-ordering of the all the element of C), as v changes. Additionally, we also see that, denoting
the class that contains e are C1, that C1 * C), = C,, so that ny,\ = ny1\ = 0,2

Let us now prove that n,, is an integer. First we prove the following lemma:

Lemme 7.15.3. A necessary and sufficient condition for a set [R] to be composed uniquely of
a set of entire classes of a group G is that

VueG, u ' [R]u=[R]

Demo. The condition is necessary because, if indeed [R] is composed of entire sets, then in each
of these sets S, u™'[S]u is itself the set S by the reordering theorem.
To see that the condition is sufficient, let us proceed by contradiction and write

[R]=[R']+[R"]

where [R'] is the largest subset of [ R] made of entire classes, and the reminder [R"] thus must
contain elements that are not an entire class. Since [R'] satisfy u '[R']u = [R'] then

U—I[R//]u _ [R”] )

e cannot be in [R"] since it is, itself, a class. Let us suppose [R"] is not empty, and z € [R"].
Then it must exists y € G, conjugated to x, which is not in [R”]. Since y is conjugated to x we
have v~ lzu = y for some u € G. But then since u™'[R"]u = [R"] for all u, y must be in [R"].
We have thus reach a contradiction, and [R"] is empty. O
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Now we can proceed. Let H be a finite group of order h and conjugacy classes C; = {e},
Cy,...,Ch,...,Cn, its classes. We shall denote by n, the number of elements in the class C),
and by N¢ the total number of classes. We have, of course

Ne
S n,=h (7.150)
p=1

Let C, and C), be two classes of H, and consider the product
C,*Cy =[uv] (7.151)
where u and v are elements of C), and C,,. Then for each x € H, we have
1C, * Oy = [27 uwz] = (o7 (e Hve] = [(a7 ) (27 o) ] (7.152)

Using the theorem of rearrangement, we see that [(z 'uz)(z lvxr)] is just a reordering of [uv]
so that
7 'C,+ Cur =0y + C, (7.153)

Applying lemma then prove theorem

7.16 Proof of Schur’s lemma

Let us prove Schur’s lemma. We are going to need the definition of "kernel" and "image" of an
operator.

Definition 7.16.1 (Kernel of an operator). The kernel KerA of an operator A:V; — V3 is the
set of vector vy € V4 such that Avy =0.

Definition 7.16.2 (Image of an operator). The image ImA of an operator A :V; — V3 is the
set of vector vy € V5 for which Jvq € V] such that vy = Av;.

Theorem 7.16.3 (Rank-Nullity theorem). For any operator A : Vi — Vs, define Rank(A) =
dim[Im(A)] and Nullity(A) = dim[Ker(A)], then dim[V;] = Nullity(A) + Rank(A).

7.16.1 Proof of lemma 1

Demo. For all g € G we have:

o Vv € KerA we have A(R1(g)v1) = R2(g9)Avy = 0. This means that the vector Ry(g)vy is
also in the kernel of A. In other words a vector in W = ker A stays in W upon transfor-
mation by R1(g),Vg: W is thus a stable sub-space of Ri(g).

o From a similar reasoning, we can deduce that the image W' = ImA is also a stable subspace
for Ro(g). Indeed, this requires implies that if a vector can be written as ve = Awv,
then Ry(g)ve can also be written as Av|. This is the case since Ra(g)ve = Ra(g)Av; =
ARl(g)’Ul = Av'.

We thus conclude thatW = KerA is a stable subspace R;(g) and that W' = A is a stable
subspace of Ro(g). However, by assumption, both representations are irreducible, so the only
subspaces are either 0 or the entire space. We thus have either:

e KerA =0, in which case the image is not empty, so that imA = V5. But this implies that
the transformation A is invertible, but then A™*Ry(g)A = R1(g)Vg, and Ry and Ry are
equivalent, which contradicts the hypothesis.

o KerA =V, in which case A =0 (and the image is empty:imA = 0).
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7.16.2 Proof of lemma 2

In this case, we have a map between either the same, or between equivalent representations.
Additionally, V1 = Vo =V, and A is a square matrix. If the representation are equivalent, we can
always rotate the space so that they are indeed identical.

Let us consider then that Ry(g) = R2(g) = R(g)Vg.

Demo. By the fundamental theorem of algebra, it exists an eigenvalue A € C such that det(A -
AI) = 0. Consider then the equation

(A-M)R(g) = R(g)(A-\). (7.154)

so that if v € Ker(A — AI') then R(g)v also in Ker(A - AI). W = Ker(A - AI) is thus a stable
subspace of transformation by R(g)Vg. Given R(g) is irreducible, either W =0 or W =V. W
cannot be zero, because at least the eigenvector of A corresponding to A is in W! Therefore
W=V.

We this have Ker(A - AI) =V, so that (A—-AI) =0 and therefore A = \I. O

7.17 Proof of grand orthogonality Lemma

Demo. Consider any matrix X and the matrix M defined as

M =73 Ri(g" )X Ra(g) (7.155)
geG

Then we have, for any y € G

MRy(y) = QEZGRl(g‘l)XR2(g)R2(y)
= gEZGRl(y)Rl(y’l)Rl(g‘l)XRQ(g)R2(y)
- Rl(y)QEZGRl(y’l)Rl(g‘l)XRz(g)Rz(y)
- Rl(y)geZGRl(yflgfl)XRﬂgy)
- Rl(y)géRl((gy)’l)XRz(gy)
= Ri(y) %Rl(h’l)XRz(h) =R (y)M

We can thus use Schur’s lemmas on M. Since R; and Rs are not equivalent we have M =0 so
that

2(:; Zl:[Rl(g‘l)]ijjz[Rz(g)]zm =0 (7.156)

but Ri(g7') is Ri(g)' so that

%ZZ[Rl(g)]Lijz[Rz(g)]zm =0 (7.157)
g€l g
%Z;[Rl(g)];kal[RZ(g)]lm =0

Using Xj; = 0 except for one pair jl for which Xj; =1 leads to eq.(7.82).
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We now turn to eq.(7.83). If we construct the matrix M using the same representation, we
get again M R(x) = R(xz)M and by the second Schur lemma:

> R(g7)XR(g) = c(X)I (7.158)
geG
which, in full matrix notation, means
> 2RO Xl R im = (X)dkm
geG jl

We just need to compute the constant. Let us work on the diagonal, when k = m, and sum over
k so that we have

>, VARG Xal R = nae(X)
geG jlk
S Xa D[R DGR = nac(X)
geG jl k
> Zle[R(Q)R(g_l)]lj = nge(X)
geG jl
> 2 Xy = nac(X)
geG 4l
DX = me(X)
geG
ox) = Ny
nA
Using again X;; = 0 except for one pair jl for which X;; = 1 leads to eq.(7.83). O

7.18 Proof of Burnside Lemma

We can now prove Burnside lemma. Consider the regular representation (which we introduced
in the previous chapter) that is obtained using N x N matrices for a finite group of order N.
Then we have a amazing fact: Any irreducible representation D of G appears in the regular
representation dim(D) times:

Theorem 7.18.1 (Regular representation decomposition). Consider the reqular representation
of a group. Then we have the following decomposition in irrep

R'(9) = ®a,2Ra,2(9) = ®aRaRa(g) (7.159)
where R, is the dimension of the representation a.
Demo. We simply apply
ba = % ;”uXZ(Cu)XT(Cu) (7.160)

and using the fact that for the regular representation all characters are zero except for the one
corresponding to e, we find

o= Xi(C) = NEN = R, (7.161)
O
This finally allows to prove Burnside’s lemma, by simply counting the dimensions:
Lemme 7.18.2 (Burnside lemma).
% d?=N (7.162)
i=1
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7.19 Representations of Lie Groups and Lie Algebras

The following theorems hold on the relationship between representations of Lie groups and Lie
algebras [0}

Theorem 7.19.1 ((Lie group reps induce Lie algebra reps)). Let G be a matriz Lie group with
Lie algebra g. If R is a representation of G on V', then there exists a unique representation r of
g on V' given by
d
r(J) = E(R(etx)) , for all X eg. (7.163)

We call r the representation of g induced by R.

Theorem 7.19.2 ((Lie algebra reps lift to simple Lie group representations)). Let G be a simply
connected matriz Lie group, and let r be a representation of the corresponding Lie algebra on V.
Then there is a unique representation R of G with the property

R(eX)=e"X) | for all X €g. (7.164)

Theorem 7.19.3 ((Lie algebra reps locally lift to Lie group reps).). Let G be a matriz Lie
group, and let r be a representation of the corresponding Lie algebra on V. Then using Theorem
1, we can always locally define a representation R on G by the mapping

R(g) =" X)), defined for all g = eX nearby I. (7.165)

Here, by “nearby” we mean “wherever the exponential map is a diffeomorphism”. Indeed, in this

region, all g can be written as g = ™.

39These statements are taken from [Representation Theory for Geometric Quantum Machine Learning - see
there for further discussion.
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7.20 Examples of symmetries of quantum models

Here I show a list of examples of quantum models and their symmetries taken from Represen-
tation Theory for Geometric Quantum Machine Learning. While these examples are framed in
a QML context they are more widely applicable.
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Example 11: Discrete symmetries

Bit parity with bit-flip symmetry: Let n be an even number of qubits. Consider a problem of classifying
computational basis product states according to their parity. Here, p; = |4;)(;|, with |¢;) = |2;,2i, ... 2;, ),
and where z;, € {0,1} the parity of |1f;) is defined as y; = f(|v%)) = Y_p_; 2, mod 2. Defining the spin-flip
operator P = ®;.‘:1 X;, where X; is the Pauli-x operator acting on the j-th qubit. One can readily see
that while P [¢;) # |1;), the parity is invariant under P, i.e. f(P |w:)) = f(|4:)). For a concrete example,
f(P01)) =1 = f(|10}). In other words, the states are not invariant under the symmetry, but the labels are.

e States: Bitstring product states |¢;) = |2i, 2, .. - 21, ) € (C2)®", where z;, € {0,1} and n even
e Labels: Parity y; = f(|s)) = X5, 2, mod 2

e Group: Z; = {1,p}

e Representation: R:G — GL((C?)®™"), where 1 - [¢;) = |t), o - [¢u) = P |ds)

Qubit reflection parity: Consider a problem of classifying states according to their qubit-reflection parity.
Defining the qubit-reflection operator R := R1 nRon—1... R|nsa),|n/2)+1, Where R; ; swaps qubits j and j/,
and writing p; = [¢;)(;], the states will have label y; =0 (y; = 15 if p; is an eigenstate of R with eigenvalue
1 (—1). Here, one can readily verify that Rp; RT = p;.

Qubit permutations: Learning problems with permutation symmetries abound. Examples include learn-
ing over sets of elements, modeling relations between pairs (graphs) or multiplets (hypergraphs) of entities,
problems defined on grids (such as condensed matter systems), molecular systems, evaluating genuine multi-
partite entanglement, or working with distributed quantum sensors. Consider for instance a problem where
an n-qubit p is a graph state encoding the topology of an underlying graph. One can create such state
by starting with the state |+)®", and applying a unitary U@#®) for each edge (a,b) in the graph. Here
Uleb) = g=iv((10X0)"®L"+(11X1))"®2") jg ap Ising-type interaction. By conjugating the state with an element of
Sn, one obtains a new quantum state whose interaction graph is isomorphic to the original one.

e States: Quantum states on qubits, where the qubit labeling index do not matter.
e Labels: (Here, any label will work, since the states themselves are invariant).
e Group: G = 5, the symmetric group on n letters

e Representation: R :G w— GL((C%)®"), where the 2-cycle (j,5') - [¢) = SWAP; ;« [1;). Note that since
any permutation in S,, can be expressed as a product of swaps, this defines our representation on all
permutations.

Translation invariance: Let H a Hamiltonian and consider the problem of classifying energies y; of a
set of eigenstates |¢;). Suppose H = Z;;] hj i1, where h;;,, is a nearest-neighbor interaction and we
impose periodic boundary conditions so that n+1 = 1. Then H commutes with the translation operator 7, :
(C%)®» — (C?)®", which translates the state 1) to the right by g sites (e.g. 70 = 1 and 7, |01101) = |01011}).
We can then use Prop. 5 to argue that the energy label y; is invariant under the group of translations, so
F(|[¥i)) = f(74 |[¢04)) for all translations T,.

o States: Eigenstates [¢;) of a Hamiltonian H on a ring of n qubits
o Labels: Eigenenergies y;, i.e. H ) = s [¥i)
e Group: G = Z,, the cyclic group of order n.

e Representation: 7 :G — GL((C?)®"), where 7, translates to the right by g sites

Figure 7.18:
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Example 12: Continuous symmetries

Unitary transformations and purity: Consider a problem of classifying pure states from mixed states.
The dataset here is composed of states with label y; = 0 (y; # 0) if p; is pure (mixed). Since the purity
is a spectral property, then the labels in & are invariant under the action of any unitary. Note that here

F(Up:UY) = f(pi), but in general Up;Ut # p;.
e States: States p; € D(H).
e Labels: Pure y; = 0 and mixed y; # 0.
e Group: G = U(d), the unitary group on H.
e Representation: U :G — U(d), where g p; = ngiUg.

Orthogonal transformations: Consider a problem of classifying orthogonal (real-valued) states from Haar-
random states. The dataset here is composed of states with label y; = 0 (y; # 0) if p; is a real-valued
state (a Haar random state). Here, the labels y; = 0 are invariant under the action of any orthogonal
unitary, as conjugated a real-valued state by a real-valued unitary yields a real-valued state. Note that here
F(Up:UY) = f(pi), but in general Up;Ut # p;.

e States: States p; € D(H).

o Labels: Orthogonal y; = 0 and mixed y; # 0.

e Group: G = O(d), the orthogonal group on H

e Representation: U :Gw— O(d), where g- p; = ngiUg

Local unitary transformations and the XXX model: Consider the problem of classifying ground states
of the Heisenberg XXX model H = JZ;‘;I(X;,‘XJ-H + YY1+ ZjZ541). Here, y; =0 (yi = 1) if p; is a
ferromagnetic (antiferromagnetic) ground state of H with J < 0 (J > 0). Since H commutes with the total
magnetization operators S, = 37, X;, Sy = 30, ¥;, 8. = 37, Z;, then the labels are invariant under
the action of the same local unitary acting on all qubits. That is, f((®} U)pi(®; UT)) = f(p) for any local
unitary U.

o States: Ground states of the X X X chain p; € D(H)

e Labels: Ferromagnetic y; = 0 and antiferromagnetic y; = 1

o Group: G =U(2)

e Representation: U:Gw— U(d), where g p; = (Ug @ - @ Ug)ps(Uyg @ - - @ Uy)T

Local unitary transformations and multipartite entanglement: Consider the problem of classifying
pure quantum states according to the amount of multipartite entanglement they posses. Here, y; = 1 if the
states posses a large amount of multipartite entanglement (according to some measure), while y; = 0 if the
states are separable. Since local unitaries do not change the multipartite entanglement in a quantum state,

then we have that f((®} U;)p: (@5 U} )) = f(pi) for any local unitary U; acting on the j-th qubit.
o States: Pure states p; € D(H)
e Labels: y; € [0,1], where 0 means separable and 1 means “highly entangled”
o Group: G=U(2) x --- x U(2), (n times)
o Representation: U : G +» U(d), where (g1,...,gn) - pi = Uy, @ -+ @ U,y )pi(Uy, @ - @ Uy )}

Figure 7.19:
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