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Appendices

7.14 Properties of functions
Consider two sets, X and Y . A function (or map) f from X to Y is defined such that, for each
element x belonging to X (denoted as x ∈ X), there exists a unique element y in Y associated
with x. We represent this element as y = f(x) and call it the image of x under the function f .
We write it as:

f ∶ X → Y , x↦ y = f(x) . (7.129)

The set X is called the domain of f , and Y is its image. The set of elements in Y , which are
images under f of elements in X, is called the image of X under f and is denoted as f(X). In
general, f(X) is a subset of Y (we write f(X) ⊂ Y ) and is not necessarily identical to Y .

The function f is injective if:

f(x) = f(x′) ⇒ x = x′ . (7.130)

For an injective function, two elements of X cannot have the same image in Y . A function is
surjective if f(X) = Y . For a surjective function, every element of Y is the image of at least one
element of X. A function that is both injective and surjective is called bijective.

Let f be a function from X to Y and g be a function from Y to Z. The composition or
product of these two functions h ∶X → Z is defined as:

h(x) = g (f(x)) . (7.131)

The function h acts from X to Z and is denoted as:

h = g ∗ f (7.132)

or simply gf when there is no possibility of confusion with other operations. It should be noted
that f ∗ g is not necessarily well-defined, and when it exists, it is not necessarily equal to g ∗ f .
For example, consider real-valued functions f(x) = x2 and g(y) = ey. We have:

(g ∗ f)(x) = g (x2) = ex2 (7.133)

and
(f ∗ g)(x) = f (ex) = e2x . (7.134)

The composition of functions is associative, meaning that if u, v, and w are functions from
X to Y , Y to Z, and Z to W , respectively, then:

(w ∗ (v ∗ u))(x) = ((w ∗ v) ∗ u)(x) . (7.135)

For each x ∈X, both sides of this equation correspond to the element:

w(v(u(x))) (7.136)

in W . Therefore, we can write:

(w ∗ (v ∗ u))(x) = ((w ∗ v) ∗ u)(x) = w ∗ v ∗ u . (7.137)
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Figure 7.17: Diagram of injective, surjective and bijective functions: (Wiki page on functions).)

If f ∶ X → Y is a bijective application, then for each element y in Y , there is a unique element
x in X such that f(x) = y, and, naturally, each element x has an image in Y . Therefore, we can
define a bijective application Y → X, y ↦ x such that y = f(x). This application is called the
inverse of f and is denoted by f−1.

Often, we consider applications from a set X to itself. An example is given by real (complex)
functions of a real (complex) variable. We define the identity application as:

e ∶ X →X , x↦ e(x) = x . (7.138)

This application is clearly bijective. If f ∶ X → Y is a bijective application, f−1 exists, and
we have:

(f−1 ∗ f)(x) = x (7.139)

for each x. Therefore, we write:
f−1 ∗ f = eX (7.140)

where we denote the identity application of X by eX . Note that we also have:

f ∗ f−1 = eY (7.141)

Theorem. Let X and Y be two sets containing the same finite number n of elements29.
The following three statements are equivalent:

(i) f ∶ X → Y is surjective,
(ii) f ∶ X → Y is injective,
(iii) f ∶ X → Y is bijective.

Proof:
(i) ⇒ f(X) = Y . Thus, f(X) is composed of n elements, which implies (ii).
(ii) ⇒ f(X) is composed of n elements. It follows that f(X) = Y , which can be reduced to

property (i).
Since (i) and (ii) are each a consequence of the other, (iii) is also true, and the theorem is

thus proved.

29Note that this theorem is not valid for two sets with different numbers of elements.
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7.14.1 Proof of Lagrange Theorem, Right and Left cosets

Let G be a group and H one of its proper subgroups. We can define an equivalence relation
—different from the last one— between the elements of G as follows: if x, y ∈ G and x−1y ∈ H
then x and y are equivalent and we write x ∼ y.

This is indeed an equivalence relation:

• a−1a = e∀a ∈ G, and e ∈H, so that a ∼ a.

• if a ∼ b then a−1b ∈ H. The inverse of a−1b is b−1a and since H is a group, b−1a ∈ H, so
that b ∼ a.

• if a ∼ b and b ∼ c, then a−1b and b−1c are both in H, thus so is the their product a−1bb−1c =
a−1c.

This equivalence relation therefore makes it possible to divide the elements of G into disjoint
classes. If x−1y ∈H, then y is equal to an element of H multiplied on the left by x. We indicate
the set thus constructed by the symbol

Cx = xH (7.142)

which the call the left co-set associated to x.
The map H → xH is one-to-one (bijective). Indeed, each element z ∈ xH is the image of

x−1z ∈H so that the map is surjective. But the map is also injective since for y, y′ ∈H, we have
xy = xy′ ⇒ y = y′.

We could also define a second equivalence relation x ∼ y if yx−1 ∈H and which this case, we
can define the concept of right co-set Hx in the same way as before.

These concepts are very useful, and allows in particular to prove Lagrange Theorem:

Demo. Consider the co-sets on the left of H. They are all disjoint or identical (since they are
equivalence classes). If there are n distinct left co-sets, their union is G. So, if we denote by g
and h the orders of G and H respectively, then g = nh and the theorem is proved.

Let us give an example for the following order 4 group

G =

∗ e a b c

e e a b c
a a e c b
b b c e a
c c b a e

(7.143)

that has the subgroup H = {e, a}:

H =
∗ e a

e e a
a a e

(7.144)

We can now construct the left co-sets:

Ce = eH = {e, a} (7.145)
Ca = aH = {a, e} = Ce (7.146)

Cb = bH = {b, c} (7.147)
Cc = cH = {c, b} = Cb (7.148)

And we see indeed that we have two left co-set of order 2.
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7.15 Composition of Conjugacy classes theorem statement and
proof

Theorem 7.15.1 ("Composition" of conjugacy classes). Let G be a group, and Cx and Cy two
of its conjugacy classes. Then we have

Cν ∗Cµ = ∑
λ

nµνλCλ (7.149)

with nµνλ integer. Here the multiplication Cν ∗Cµ is defined as the entire set [xy] for all x ∈ Cν
and y ∈ Cµ. Additionally, nνµλ = nµνλ and n1νλ = nν1λ = δν,λ.

To prove this, let us first prove a variant of the reordering theorem:

Theorem 7.15.2 (Reordering theorem within conjugacy classes). Let G be a group, m one of
its elements, and C one of the conjugate classes. Then the application C →m−1Cm is bijective
into itself: The ensemble m−1Cm is thus a re-ordering of C.

Demo. First notice that this is a map into itself since for any y ∈ C, m−1ym ∈ C (conjugacy
class property). Second, the map is surjective. Indeed, for any y ∈ C, it exists x = mym−1 ∈ G
such that y = m−1xm. By definition, x is thus also in C and therefore for all y ∈ C there is
an antecedent in C. Third, the map x → mx is injective (it maps distinct elements to distinct
elements). For any x,x′, we have m−1xm =m−1x′m implies that mm−1xmm−1 =mm−1x′mm−1

so that x = x′.

We shall soon prove that nνµλ is indeed an integer. But first, let us note indeed that
nνµλ = nµνλ, because the two sets Cν ∗Cµ and Cµ ∗Cν are identical. Indeed

Cν ∗Cµ = [uv] = [uv(u−1u)] = [u(vu−1u)] = [uvu−1u] = [(uvu−1)u] = Cµ ∗Cν

since u represents all the element of Cν , and since, from the previous theorem, (uvu−1) represent
a re-ordering of the all the element of Cµ as v changes. Additionally, we also see that, denoting
the class that contains e are C1, that C1 ∗Cν = Cν so that n1νλ = nν1λ = δν,λ.

Let us now prove that nνµλ is an integer. First we prove the following lemma:

Lemme 7.15.3. A necessary and sufficient condition for a set [R] to be composed uniquely of
a set of entire classes of a group G is that

∀u ∈ G, u−1[R]u = [R]

Demo. The condition is necessary because, if indeed [R] is composed of entire sets, then in each
of these sets S, u−1[S]u is itself the set S by the reordering theorem.
To see that the condition is sufficient, let us proceed by contradiction and write

[R] = [R′] + [R′′]

where [R′] is the largest subset of [R] made of entire classes, and the reminder [R′′] thus must
contain elements that are not an entire class. Since [R′] satisfy u−1[R′]u = [R′] then

u−1[R′′]u = [R′′] .

e cannot be in [R′′] since it is, itself, a class. Let us suppose [R′′] is not empty, and x ∈ [R′′].
Then it must exists y ∈ G, conjugated to x, which is not in [R′′]. Since y is conjugated to x we
have u−1xu = y for some u ∈ G. But then since u−1[R′′]u = [R′′] for all u, y must be in [R′′].
We have thus reach a contradiction, and [R′′] is empty.
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Now we can proceed. Let H be a finite group of order h and conjugacy classes C1 = {e},
C2, . . . ,Cµ, . . . ,CNC

its classes. We shall denote by nµ the number of elements in the class Cµ
and by NC the total number of classes. We have, of course

Nc

∑
µ=1

nµ = h (7.150)

Let Cµ and Cν be two classes of H, and consider the product

Cµ ∗Cν = [uv] (7.151)

where u and v are elements of Cµ and Cν . Then for each x ∈H, we have

x−1Cµ ∗Cνx = [x−1uvx] = [x−1u(xx−1)vx] = [(x−1ux)(x−1vx)] (7.152)

Using the theorem of rearrangement, we see that [(x−1ux)(x−1vx)] is just a reordering of [uv]
so that

x−1Cµ ∗Cνx = Cµ ∗Cν (7.153)
Applying lemma 7.15.3 then prove theorem 7.15.1.

7.16 Proof of Schur’s lemma
Let us prove Schur’s lemma. We are going to need the definition of "kernel" and "image" of an
operator.
Definition 7.16.1 (Kernel of an operator). The kernel KerA of an operator A ∶ V1 → V2 is the
set of vector v1 ∈ V1 such that Av1 = 0.
Definition 7.16.2 (Image of an operator). The image ImA of an operator A ∶ V1 → V2 is the
set of vector v2 ∈ V2 for which ∃v1 ∈ V1 such that v2 = Av1.
Theorem 7.16.3 (Rank-Nullity theorem). For any operator A ∶ V1 → V2, define Rank(A) =
dim[Im(A)] and Nullity(A) = dim[Ker(A)], then dim[V1] = Nullity(A) +Rank(A).

7.16.1 Proof of lemma 1

Demo. For all g ∈ G we have:
• ∀v1 ∈ KerA we have A(R1(g)v1) = R2(g)Av1 = 0. This means that the vector R1(g)v1 is

also in the kernel of A. In other words a vector in W = kerA stays in W upon transfor-
mation by R1(g),∀g: W is thus a stable sub-space of R1(g).

• From a similar reasoning, we can deduce that the image W ′ = ImA is also a stable subspace
for R2(g). Indeed, this requires implies that if a vector can be written as v2 = Av1,
then R2(g)v2 can also be written as Av′1. This is the case since R2(g)v2 = R2(g)Av1 =
AR1(g)v1 = Av′.

We thus conclude thatW = KerA is a stable subspace R1(g) and that W ′ = A is a stable
subspace of R2(g). However, by assumption, both representations are irreducible, so the only
subspaces are either 0 or the entire space. We thus have either:

• KerA = 0, in which case the image is not empty, so that imA = V2. But this implies that
the transformation A is invertible, but then A−1R2(g)A = R1(g)∀g, and R2 and R1 are
equivalent, which contradicts the hypothesis.

• KerA = V1, in which case A = 0 (and the image is empty:imA = 0).
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7.16.2 Proof of lemma 2

In this case, we have a map between either the same, or between equivalent representations.
Additionally, V1 = V2 = V , and A is a square matrix. If the representation are equivalent, we can
always rotate the space so that they are indeed identical.

Let us consider then that R1(g) = R2(g) = R(g)∀g.

Demo. By the fundamental theorem of algebra, it exists an eigenvalue λ ∈ C such that det(A −
λI) = 0. Consider then the equation

(A − λI)R(g) = R(g)(A − λI) . (7.154)

so that if v ∈ Ker(A − λI) then R(g)v also in Ker(A − λI). W = Ker(A − λI) is thus a stable
subspace of transformation by R(g)∀g. Given R(g) is irreducible, either W = 0 or W = V . W
cannot be zero, because at least the eigenvector of A corresponding to λ is in W ! Therefore
W = V .

We this have Ker(A − λI) = V , so that (A − λI) = 0 and therefore A = λI.

7.17 Proof of grand orthogonality Lemma
Demo. Consider any matrix X and the matrix M defined as

M = ∑
g∈G

R1(g−1)XR2(g) (7.155)

Then we have, for any y ∈ G

MR2(y) = ∑
g∈G

R1(g−1)XR2(g)R2(y)

= ∑
g∈G

R1(y)R1(y−1)R1(g−1)XR2(g)R2(y)

= R1(y) ∑
g∈G

R1(y−1)R1(g−1)XR2(g)R2(y)

= R1(y) ∑
g∈G

R1(y−1g−1)XR2(gy)

= R1(y) ∑
g∈G

R1((gy)−1)XR2(gy)

= R1(y) ∑
h∈G

R1(h−1)XR2(h) = R1(y)M

We can thus use Schur’s lemmas on M . Since R1 and R2 are not equivalent we have M = 0 so
that

∑
g∈G

∑
jl

[R1(g−1)]kjXjl[R2(g)]lm = 0 (7.156)

but R1(g−1) is R1(g)† so that

∑
g∈G

∑
jl

[R1(g)]†kjXjl[R2(g)]lm = 0 (7.157)

∑
g∈G

∑
jl

[R1(g)]∗jkXjl[R2(g)]lm = 0

Using Xjl = 0 except for one pair jl for which Xjl = 1 leads to eq.(7.82).
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We now turn to eq.(7.83). If we construct the matrix M using the same representation, we
get again MR(x) = R(x)M and by the second Schur lemma:

∑
g∈G

R(g−1)XR(g) = c(X)I (7.158)

which, in full matrix notation, means

∑
g∈G

∑
jl

[R(g)]∗jkXjl[R(g)]lm = c(X)δkm

We just need to compute the constant. Let us work on the diagonal, when k =m, and sum over
k so that we have

∑
g∈G

∑
jlk

[R(g−1)]kjXjl[R(g)]lk = nac(X)

∑
g∈G

∑
jl

Xjl∑
k

[R(g−1)]kj[R(g)]lk = nac(X)

∑
g∈G

∑
jl

Xjl[R(g)R(g−1)]lj = nac(X)

∑
g∈G

∑
jl

XjlIlj = nac(X)

∑
g∈G

TrX = nac(X)

c(X) = N

nA
TrX

Using again Xjl = 0 except for one pair jl for which Xjl = 1 leads to eq.(7.83).

7.18 Proof of Burnside Lemma
We can now prove Burnside lemma. Consider the regular representation (which we introduced
in the previous chapter) that is obtained using N ×N matrices for a finite group of order N .
Then we have a amazing fact: Any irreducible representation D of G appears in the regular
representation dim(D) times:
Theorem 7.18.1 (Regular representation decomposition). Consider the regular representation
of a group. Then we have the following decomposition in irrep

Rr(g) = ⊕a,xRa,x(g) = ⊕aRaRa(g) (7.159)

where Ra is the dimension of the representation a.
Demo. We simply apply

ba =
1
N
∑
µ

nµχ
∗
a(Cµ)χr(Cµ) (7.160)

and using the fact that for the regular representation all characters are zero except for the one
corresponding to e, we find

ba =
1
N
χ∗a(Ce) =

Ra
N
N = Ra (7.161)

This finally allows to prove Burnside’s lemma, by simply counting the dimensions:
Lemme 7.18.2 (Burnside lemma).

Nr

∑
i=1
d2
i = N (7.162)
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7.19 Representations of Lie Groups and Lie Algebras
The following theorems hold on the relationship between representations of Lie groups and Lie
algebras 30:

Theorem 7.19.1 ((Lie group reps induce Lie algebra reps)). Let G be a matrix Lie group with
Lie algebra g. If R is a representation of G on V , then there exists a unique representation r of
g on V given by

r(J) = d

dt
(R(etX))∣

t=0
, for all X ∈ g. (7.163)

We call r the representation of g induced by R.

Theorem 7.19.2 ((Lie algebra reps lift to simple Lie group representations)). Let G be a simply
connected matrix Lie group, and let r be a representation of the corresponding Lie algebra on V .
Then there is a unique representation R of G with the property

R(eX) = er(X), for all X ∈ g. (7.164)

Theorem 7.19.3 ((Lie algebra reps locally lift to Lie group reps).). Let G be a matrix Lie
group, and let r be a representation of the corresponding Lie algebra on V . Then using Theorem
1, we can always locally define a representation R on G by the mapping

R(g) = er(X), defined for all g = eX nearby I. (7.165)

Here, by “nearby” we mean “wherever the exponential map is a diffeomorphism”. Indeed, in this
region, all g can be written as g = eX .

30These statements are taken from Representation Theory for Geometric Quantum Machine Learning - see
there for further discussion.
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7.20 Examples of symmetries of quantum models
Here I show a list of examples of quantum models and their symmetries taken from Represen-
tation Theory for Geometric Quantum Machine Learning. While these examples are framed in
a QML context they are more widely applicable.

123

https://arxiv.org/abs/2210.07980
https://arxiv.org/abs/2210.07980


Quantum Physics II CHAPTER 7. SYMMETRY IN QUANTUM MECHANICS

Figure 7.18:
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Figure 7.19:
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